The vesicular ATPase: A missing link between acidification and exocytosis

نویسندگان

  • Dong Wang
  • P. Robin Hiesinger
چکیده

The vesicular adenosine triphosphatase (ATPase) acidifies intracellular compartments, including synaptic vesicles and secretory granules. A controversy about a second function of this ATPase in exocytosis has been fuelled by questions about multiple putative roles of acidification in the exocytic process. Now, Poëa-Guyon et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201303104) present new evidence that the vesicular ATPase performs separate acidification and exocytosis roles and propose a mechanism for how these two functions are causally linked.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vesicular ATPase Inserted into the Plasma Membrane of Motor Terminals by Exocytosis Alkalinizes Cytosolic pH and Facilitates Endocytosis

Key components of vesicular neurotransmitter release, such as Ca(2+) influx and membrane recycling, are affected by cytosolic pH. We measured the pH-sensitive fluorescence of Yellow Fluorescent Protein transgenically expressed in mouse motor nerve terminals, and report that Ca(2+) influx elicited by action potential trains (12.5-100 Hz) evokes a biphasic pH change: a brief acidification (∼ 13 n...

متن کامل

V-ATPase Membrane Sector Associates with Synaptobrevin to Modulate Neurotransmitter Release

Acidification of synaptic vesicles by the vacuolar proton ATPase is essential for loading with neurotransmitter. Debated findings have suggested that V-ATPase membrane domain (V0) also contributes to Ca(2+)-dependent transmitter release via a direct role in vesicle membrane fusion, but the underlying mechanisms remain obscure. We now report a direct interaction between V0 c-subunit and the v-SN...

متن کامل

The V-ATPase a2-subunit as a putative endosomal pH-sensor.

V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However,...

متن کامل

The heterotrimeric G protein Go2 regulates catecholamine uptake by secretory vesicles.

Secretory vesicles store neurotransmitters that are released by exocytosis. Their membrane contains transporters responsible for transmitter loading that are driven by an electrochemical proton gradient across the vesicle membrane. We have now examined whether uptake of noradrenaline is regulated by heterotrimeric G proteins. In streptolysin O-permeabilized PC 12 cells, GTP-analogues and AlF4- ...

متن کامل

Munc-18-2 regulates exocytosis of H(+)-ATPase in rat inner medullary collecting duct cells.

Exocytic insertion of H(+)-ATPase into the apical membrane of inner medullary collecting duct (IMCD) cells is dependent on a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein target receptor (SNARE) complex. In this study we determined the role of Munc-18 in regulation of IMCD cell exocytosis of H(+)-ATPase. We compared the effect of acute cell acidification (the stimulus for I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 203  شماره 

صفحات  -

تاریخ انتشار 2013